Week 5 glossary#
Online resources#
The official matplotlib documentation can be found in https://matplotlib.org/stable/api/index.html (note: we are using the “axes interface”)
In addition, you may find the cheatsheets provided by matplotlib (https://matplotlib.org/cheatsheets/) useful.
Numpy syntax#
+,-,*,/,//,%,**: arithmetic operators on multi-dimensional numpy arrays<br><br>[]: indexing operators on multi-dimensional numpy array:: operator to create slicing object of form start:stop:step
Numpy attributes, functions and methods#
Numpy array attributes#
<ndarray>.size: the size (number of entries) of a numpy array<ndarray>.shape: the shape of a numpy array<ndarray>.ndim: number of dimensions of the numpy array
Numpy array methods#
<ndarray>.reshape(): reshape an numpy array<ndarray>.flatten(): flatten a multi-dimensional array to 1D<ndarray>.transpose(): transpose the rows and columns of a 2D numpy array
Numpy array combining functions#
np.concatenate(): concatenate numpy arrays along a specified axisnp.vstack(): combine 2D numpy arrays vertically (i.e., extending rows)np.hstack(): combine 2D numpy arrays horizonatal (i.e., extending columns)
Numpy mapping functions#
np.exp(),np.sin(), etc. Functions that applying a mapping to each element of a multi-dimensional array (for a more complete list, see the glossary of week 4)
Numpy reduction functions#
np.mean(),np.sum(), etc. Functions that apply reduction along particular axis / axes or across the whole multi-dimensional array (for a more complete list, see the glossary of week 4)
matplotlib functions#
Creating, showing, and exporting figures and axes#
plt.figure(): create a new figure<Figure>.add_subplot(): add new axes object to a Figure instance<Figure>.savefig(): save a figure to an external fileplt.show(): show a figure already created
Making different types of visualization#
<Axes>.plot(): create a line plot on an Axes instance<Axes>.scatter(): create a scatter plot on an Axes instance<Axes>.errorbar(): create an error bar plot on an Axes instance<Axes>.bar(): create a bar plot on an Axes instance<Axes>.hist(): create a histogram on an Axes instance
Axes and titles#
<Axes>.set_title(): set the title of the figure, for an Axes instance<Axes>.set_xlabel(),<Axes>.set_ylabel(): set the labels for x- and y-axis, respectively, for an Axes instance<Axes>.set_xlim(),<Axes>.set_ylim(): set the x- and y-axis limits, respectively, for an Axes instance<Axes>.set_xticks(),<Axes>.set_yticks(): set the ticks for x- and y-axis, respectively, for an Axes instance<Axes>.tick_params(): set the parameters for ticks (e.g., font size for tick labels), for an Axes instance<Axes>.grid(): create a grid overlay for an Axes instance<Axes>.legend(): create a legend for an Axes instance